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Introduction. Yoshihisa Yamamoto & Ataç İmamağlu, in §1.3.4 of their
Mesoscopic Quantum Optics (1999), discuss aspects of the quantum theory
of system/probe interaction in language that considers system and probe (or
measurement device/meter) to be component parts of a composite system, and
that assumes both system and probe are rich enough to support definitions
of “conjugate observables” that satisfy [q , p ] = i! I . An implication of the
latter assumption is that the state spaces Hs and Hm of system and probe
are, of necessity, infinite-dimensional. We must therefore sacrifice a simplifying
assumption standard to the quantum theory of composite systems; namely,
that all relevant state spaces—all vectors and matrices—are finite-dimensional.
We therefore lose the Kronecker product. My objective here is to develop the
mathematical resources that permit us to live with that loss.

Tensor products in the infinite-dimensional case. Familiarly,
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where on the right we see components of aaa joined with components of bbb in all
possible ways, and the population of such products presented in a specific order.
It is the latter convention that becomes unworkable—must be sacrificed—if
either aaa or bbb is ∞-dimensional.

Let vectors
{
|s)

}
comprise an orthonormal basis in Hs, and

{
|m)

}
comprise

an orthonormal basis in Hm. Then every |a) in Hs can be developed

|a) =
∑

as|s) with as = (s|a)

and every |b) in Hm can be developed

|b) =
∑

bm|m) with bm = (m|b)
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We stipulate that Hs ⊗ Hm is an inner product space, with induced inner
product structure

(
(a |⊗ (b |

)(
|c) ⊗ |d)

)
= (a|c) · (b |d)

Then

(
(r |⊗ (m |

)(
|s) ⊗ |n)

)
= (r|s) · (m |n) =

{
δrs · δmn

δ(r − s) · δ(m − n)

establishes the orthonormality of the basis vectors

|s, m) ≡ |s) ⊗ |m) : elements of H ≡ Hs ⊗ Hm

and ∑

s,m

|s, m)(s, m| =
∑

s,m

(
|s) ⊗ |m)

)(
(s|⊗ (m|

)
= I ≡ Is ⊗ Im

establishes their completeness.

If |ψ) and |φ) describe the quantum state of system/meter respectively,
then

|Ψ) = |ψ) ⊗ |φ) =
∑

s,m

(
|s) ⊗ |m)

)
ψsφm

where ψs = (s|ψ) and φm = (m|φ). But the state of the composite system has
more generally to be described

|Ψ) =
∑

s,m

(
|s) ⊗ |m)

)
Ψs,m

where Ψs,m = (s, m|Ψ). The state of the composite system is “entangled”
unless—exceptionally—the numbers Ψs,m can be factored: Ψs,m = ψsφm.

Passing to density matrix language, we write

ρρρs = |ψ)(ψ| =
∑

r,s

ψr|r)(s|ψ∗
s

to describe the disentangled pure state of the system, and a similar expression
to describe the disentangled pure state ρρρm = |φ)(φ| of the probe. Observe that

ρρρs · ρρρs =
∑

r,s

∑

r′,s′

ψr|r)(s|ψ∗
sψr′ |r′)(s′|ψ∗

s′

=
∑

r,s

∑

s′

ψr|r)ψ∗
sψs(s

′|ψ∗
s′

=
∑

r

∑

s′

ψr|r)(s′|ψ∗
s′ by

∑
ψ∗

sψs = 1

= ρρρs
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and
trρρρs =

∑

q

∑

r,s

ψr(q|r)(s|q)ψ∗
s =

∑

q

ψqψ
∗
q = 1

and that both statements are immnediate if one works from ρρρs = |ψ)(ψ|.

If the system and probe are only “mentally conjoined” (their respective
quantum states disentangled) the density operator of the conjoint systems is

ρρρ =
( ∑

ψrφm |r) ⊗ |m)
)
·
( ∑

(s |⊗ (n |ψ∗
sφ∗

n

)

=
( ∑

ψr|r)(s |ψ∗
s

)
⊗

( ∑
φm|m)(n |φ∗

n

)

= ρρρs ⊗ ρρρm

We can recover either factor by using the partial trace to “reduce” ρρρ by “tracing
out” the unwanted factor:

tr1 ρρρ ≡
∑

q

(
(q |⊗ Im

)
ρρρ

(
|q ) ⊗ Im

)

=
( ∑

q

∑

rs

ψr(q|r)(s|q) |ψ∗
s

)

︸ ︷︷ ︸

⊗
( ∑

mn

φm|m)(n |φ∗
n

)

︸ ︷︷ ︸
1 ρρρm

= ρρρm

tr2 ρρρ ≡
∑

p

(
Is ⊗ (p |

)
ρρρ

(
Is ⊗ |p)

)

= ρρρs

The partial trace concept remains in force (and acquires special
importance) even when the state of the ρρρ of the composite system is mixed
or entangled. One then has

ρρρ =
∑

ρrm;sn

(
|r) ⊗ |m)

)
·
(
(s |⊗ (n |

)

with ρ∗rm,sn = ρsn;rm and
∑

rm ρrm;rm = 1 and defines

tr1 ρρρ ≡
∑

p

(
(p |⊗ Im

)
ρρρ

(
|p) ⊗ Im

)

=
∑

p

∑

mn

ρpm;pn |m)(n |

tr2 ρρρ ≡
∑

q

(
Is ⊗ (q |

)
ρρρ

(
Is ⊗ |q)

)

=
∑

q

∑

rs

ρrq;sq |r)(s |
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Clearly
trρρρ = tr

(
tr1 ρρρ

)
= tr

(
tr2 ρρρ

)
=

∑

pq

ρpq;pq = 1

The operators ρρρ,
S ≡ tr2 ρρρ =

∑

q

∑

rs

ρrq;sq |r)(s |

M ≡ tr1 ρρρ =
∑

p

∑

mn

ρpm;pn |m)(n |

are self-adjoint, so can be brought to diagonal (spectral representative) form

ρρρ =
∑

u

|Ru)Ru(Ru| : |Ru) live in Hs ⊗ Hm

S =
∑

i

|Si)Si(Si| : |Si) live in Hs

M =
∑

j

|Mj)Mj(Mj | : |Mj) live in Hm

by unitary transformation. One has

tr S =
∑

i

Si = 1

tr S2 =
∑

i

S 2
i =

∑

pq

∑

rs

ρrp;sp ρsq;rq ! 1

and can say similar things about trM and trM2.

If we had had the foresight to work in the eigenbases of the reduced density
matrices S and M we would have had

ρρρ =
∑

ijkl

Rik ;jl

(
|Si) ⊗ |Mk)

)
·
(
(Sj |⊗ (Ml |

)

which if ρρρ referred to a disentangled pure state of the composite system would
have assumed the form

=
( ∑

i

Si|Si)(Si|
)
⊗

( ∑

k

Mk|Mk)(Mk|
)

=
∑

ik

SiMk

(
|Si) ⊗ |Mk)

)
·
(
(Si |⊗ (Mk |

)

which would entail Rik ;jl = SiMkδijδkl.


